skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nadeem, Hassan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Efficient sampling in biomolecular simulations is critical for accurately capturing the complex dynamic behaviors of biological systems. Adaptive sampling techniques aim to improve efficiency by focusing computational resources on the most relevant regions of the phase space. In this work, we present a framework for identifying the optimal sampling policy through metric-driven ranking. Our approach systematically evaluates the policy ensemble and ranks the policies based on their ability to explore the conformational space effectively. Through a series of biomolecular simulation case studies, we demonstrate that the choice of a different adaptive sampling policy at each round significantly outperforms single policy sampling, leading to faster convergence and improved sampling performance. This approach takes an ensemble of adaptive sampling policies and identifies the optimal policy for the next round based on current data. Beyond presenting this ensemble view of adaptive sampling, we also propose two sampling algorithms that approximate this ranking framework on the fly. The modularity of this framework allows incorporation of any adaptive sampling policy, making it versatile and suitable as a comprehensive adaptive sampling scheme. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  2. Molecular dynamics (MD) simulations are fundamental computational tools for the study of proteins and their free energy landscapes. However, sampling protein conformational changes through MD simulations is challenging due to the relatively long time scales of these processes. Many enhanced sampling approaches have emerged to tackle this problem, including biased sampling and path-sampling methods. In this Perspective, we focus on adaptive sampling algorithms. These techniques differ from other approaches because the thermodynamic ensemble is preserved and the sampling is enhanced solely by restarting MD trajectories at particularly chosen seeds rather than introducing biasing forces. We begin our treatment with an overview of theoretically transparent methods, where we discuss principles and guidelines for adaptive sampling. Then, we present a brief summary of select methods that have been applied to realistic systems in the past. Finally, we discuss recent advances in adaptive sampling methodology powered by deep learning techniques, as well as their shortcomings. 
    more » « less